Title: Energy storage management strategies under uncertain generation: combining prediction and optimization
Abstract:
This work presents a novel approach to scheduling storage units in a photovoltaic generation system based on stochastic optimization. A common approach to take advantage of historical data for stochastic optimization has been to use machine learning techniques to compute relevant scenarios. Instead of this “predict THEN optimize” strategy, we show that using a combined “predict AND optimize” approach results in better recommendations. The resulting scenarios capture the relevant effects on the decision process and not just data features. We show experimental results applied to a real-life control system with limited computation capacity and further validate our results by testing the resulting schedules in an actual prototype.